Interference:

Constructive Interference:

Crests from both waves overlap.

The path difference $\Delta r = \delta$ a multiple of the wavelength λ .

$$\Delta r = \delta = m\lambda$$
, m=0, ±1, ±2, ±3, etc.

The phase difference $\Delta \phi$ is a multiple of 2π :

$$\Delta \phi = 0, \pm 2\pi, \pm 4\pi, \pm 6\pi, \text{ etc.}$$

$$\Delta \phi = 2m\pi$$
, m=0, ±1, ±2, ±3, etc.

Destructive Interference:

Crest from wave 1 overlaps with trough from wave 2.

The path difference $\Delta r = \delta$ is an **odd** multiple of $\lambda/2$.

$$\Delta r = \delta = (m+1/2)\lambda$$
, m=0, ±1, ±2, ±3, etc.

The phase difference $\Delta \phi$ is an **odd** multiple of π

$$\Delta \phi = \pm \pi, \pm 3\pi, \pm 5\pi, \text{ etc.}$$

$$\Delta \phi = (m+1/2)2\pi$$
, m=0, ±1, ±2, ±3, etc.

Conversion:

A phase difference $\Delta \phi$ (or $\Delta \beta$) of 2π corresponds to a path difference of one wavelength λ , therefore:

$$\Delta \varphi = (2\pi \Delta r)/\lambda = (2\pi \delta)/\lambda$$
.

Interference from thin films:

a) The **wavelength in a medium** with refractive index n is $\lambda_n = \lambda_{VAC}/n$.

Phase change due to path difference:

$$\Delta \phi = (2\pi \ n \ \Delta r)/\lambda_{VAC}$$
.

b) In thin films, we also need to consider the **phase** changes due to reflection:

Serway, page 646 (Ch. 22):

When a wave travels from medium A to medium B and $v_A>v_B$, the reflected wave is **inverted** upon reflection. When a wave travels from medium A to medium B and $v_A< v_B$, the reflected wave is **not inverted**. The **transmitted** wave is never inverted.

For **light waves** (Serway, page 771, Ch. 27): If the wave travels from medium 1 to medium 2 and $n_1 < n_2$: 180° phase change. Low to high, phase change π . High to low, phase change no.

Example: Air/film/air interface: